Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Photodiagnosis Photodyn Ther ; 40: 103103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36057363

RESUMO

Multifunctional P123 micelle linked covalently with spermine (SM) and folic acid (FA) was developed as a drug delivery system of hypericin (HYP). The chemical structures of the modified copolymers were confirmed by spectroscopy and spectrophotometric techniques (UV-vis, FTIR, and 1H NMR). The copolymeric micelles loading HYP were prepared by solid dispersion and characterized by UV-vis, fluorescence, dynamic light scattering (DLS), ζ potential, and transmission electron microscopy (TEM). The results provided a good level of stability for HYP-loaded P123-SM, P123-FA, and P123-SM/P123-FA in the aqueous medium. The morphology analysis showed that all copolymeric micelles are spherical. Well-defined regions of different contrast allow us to infer that SM and FA were localized on the surface of micelles, and the HYP molecules are located in the core region of micelles. The uptake potential of multifunctional P123 micelle was accessed by exposing the micellar systems loading HYP to two cell lines, B16-F10 and HaCaT. HYP-loaded P123 micelles reveal a low selectivity for melanoma cells, showing significant photodamage for HaCat cells. However, the exposition of B16-F10 cells to Hyp-loaded SM- and FA-functionalized P123 micelles under light irradiation revealed the lowest CC50 values. The interpretation of these results suggested that the combination of SM and FA on P123 micelles is the main factor in enhancing the HYP uptake by melanoma cells, consequently leading to its photoinactivation.


Assuntos
Melanoma , Fotoquimioterapia , Humanos , Micelas , Fotoquimioterapia/métodos , Ácido Fólico/química , Poloxaleno/química , Espermina , Polímeros/química , Melanoma/tratamento farmacológico , Portadores de Fármacos/química
2.
Acta Trop ; 230: 106393, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35278368

RESUMO

Schistosomiasis is one of the most important tropical diseases. A fundamental strategy to control its spread is the use of natural products against its vectors, which are snails of the genus Biomphalaria. The present study evaluated the chemical composition, the molluscicidal and cercaricidal effects, and the ecotoxicity of the essential oil from the aerial parts of Dysphania ambrosioides (L.) Mosyakin & Clemants (DAEO). The essential oil was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Molluscicidal and cercaricidal activities were determined by the immersion method. Environmental toxicity was assessed from bioassays using Artemia salina larvae and Danio rerio fish. DAEO presented a 0.8% yield. The GC-MS analysis revealed the predominance of hydrocarbon monoterpenes in the oil. A total of 32 constituents was identified, with α-terpinene (50.69%) being the major compound, followed by p-cymene (13.27%) and ascaridole (10.26%). DAEO was active against adult Biomphalaria glabrata snails and demonstrated lethal effect against Schistosoma mansoni cercariae, with LC50 values of 25.2 (22.7-27.8) and 62.4 (61.8-62.9) µg/mL, respectively. Regarding toxicity to non-target aquatic organisms, the oil showed LC50 values of 86.9 (84.7-87.6) and 18.6 µg/mL (15.5-22.8) for A. salina and D. rerio, respectively. DAEO proved to be a promising natural product for the control of schistosomiasis, acting on both the vectors and the etiological agent of the disease. However, the use of the oil is safer in transmission sites where there are no non-target organisms, as it has showed toxicity to D. rerio fish.


Assuntos
Biomphalaria , Moluscocidas , Óleos Voláteis , Esquistossomose , Animais , Moluscocidas/química , Moluscocidas/toxicidade , Óleos Voláteis/toxicidade , Schistosoma mansoni , Peixe-Zebra
3.
Vet Parasitol ; 238: 54-57, 2017 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-28342670

RESUMO

The Essential Oils (EOs) from the leaves of species Cinnamomum verum J. Presl are used in the pharmaceutical industry for their numerous biological activities. Currently, the main compound of C. verum EO is eugenol which has acaricidal activity; however, a rare chemotype with benzyl benzoate as the main component can be found. Benzyl benzoate is recognized as an acaricide; however, studies of the C. verum EOs benzyl benzoate chemotype on Rhipicephalus microplus were not reported. The aim of this study was to evaluate the acaricide activity of an EO from a rare chemotype of C. verum, as well as purified benzyl benzoate, against larvae and engorged females of R. microplus resistant to amidines and pyrethroids. The EO was extracted from C. verum leaves and the compounds present were identified using a gas phase chromatograph coupled to a mass spectrometer. Efficacy against R. microplus was assessed by the larval packet and the engorged female immersion tests. A rare chemotype of C. verum was found to produce EOs with benzyl benzoate (65.4%) as the main compound. The C. verum essential oil was 3.3 times more efficient on the R. microplus larvae than was benzyl benzoate. However, no differences were found on the R. microplus engorged females. This is the first report regarding the acaricidal activity of C. verum with chemotype benzyl benzoate, and this compound showed acaricidal activity on R. microplus larvae.


Assuntos
Acaricidas/farmacologia , Cinnamomum zeylanicum/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Rhipicephalus/efeitos dos fármacos , Acaricidas/química , Animais , Feminino , Óleos Voláteis/química , Folhas de Planta/química , Óleos de Plantas/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-25949264

RESUMO

The mosquito Aedes aegypti L. (Diptera: Culicidae) is the major vector of dengue and chikungunya fever. The lack of effective therapies and vaccines for these diseases highlights the need for alternative strategies to control the spread of virus. Therefore, this study investigated the larvicidal potential of essential oils from common plant species obtained from the Chapada das Mesas National Park, Brazil, against third instar A. aegypti larvae. The chemical composition of these oils was determined by gas chromatography coupled to mass spectrometry. The essential oils of Eugenia piauhiensis Vellaff., Myrcia erythroxylon O. Berg, Psidium myrsinites DC., and Siparuna camporum (Tul.) A. DC. were observed to be mainly composed of sesquiterpene hydrocarbons. The essential oil of Lippia gracilis Schauer was composed of oxygenated monoterpenes. Four of the five tested oils were effective against the A. aegypti larvae, with the lethal concentration (LC50) ranging from 230 to 292 mg/L after 24 h of exposure. Overall, this work demonstrated the possibility of developing larvicidal products against A. aegypti by using essential oils from the flora of the Brazilian Legal Amazon. This in turn demonstrates the potential of using natural resources for the control of disease vectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA